Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 3 – Basic Evasion


IDS Evasion Techniques

Since the introduction of intrusion detection systems they became very popular amongst network administrators because it provided a way to detect if any attacks took place. At them days (1990s) these systems were very simple devises that monitor the network traffic, match it to a database of signatures and if there is a match an alert is produced that informs the administrator of the event
(Bruneau, 2001,
History and Evolution of Intrusion Detection, p. 3). Throughout the years attackers, security professionals, researchers and developers have always played a cat and mouse game. Every time developers, security professionals and researchers find or develop new ways to counteract attacks, attackers seem to develop new ways to attack security devises such as IDSs or even bypass them altogether. This is because of the complexities in capturing, analysing and understanding network traffic (Timm, 2002, IDS Evasion Techniques and Tactics, p. 1). These complexities meant the existence of many techniques that can be used to take advantage of the weaknesses in IDSs. These methods were very simple such as pattern matching, denial of service (DOS) and false positives. However overtime more advanced techniques such as fragmentation, session splicing and polymorphic shell-code techniques began to appear.

As mentioned by (Roberts, 2010)
that stonesoft’s disclosure of a new way to evade IDSs and IPSs (IDPSs) raises some doubts about the effectiveness of many security products already used by many organisations worldwide. However stonesoft’s discovery was not new; anyone has an interest in information security knows that these techniques have been around for a very long time and was first mentioned in 1998 by (Newsham, 1998).

As quoted by (Roberts, 2010):

“Researchers working for Stonesoft have been delving into evasion techniques since 2007 in an effort to improve Stonesoft’s own products, said Matt McKinley, Director of Product Management in the U.S.”

He further quoted:

“”In the process of doing so, we basically discovered that it’s possible to combine multiple evasion techniques together working at different layers (of the IP stack) and they can confound the IPS and become hard to protect,” he said.”

However, I respectfully disagrees with what Mr. Matt McKinley had said; this is because these techniques as will be discussed in the following sections have been around for a very long time and all are based on the techniques mentioned in
(Newsham, 1998)
paper.

In this section the author presents an overview of some of these techniques by dividing them into two categories Basic techniques and Complex techniques.

Continue reading Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 3 – Basic Evasion
Advertisement

Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 2


A look at IDSs in more details

As described by Karen Scarfone and Peter Mell (2007, page 15):

“Intrusion detection is the process of monitoring the events occurring in a computer system or network and analysing them for signs of possible incidents, which are violations or imminent threats of violation of computer security policies, acceptable use policies, or standard security practices. Incidents have many causes, such as malware (e.g., worms, spyware), attackers gaining unauthorized access to systems from the Internet, and authorized users of systems who misuse their privileges or attempt to gain additional privileges for which they are not authorized.”

They also mentioned that an IDS is a software that automates the process of intrusion detection and an IPS has the same functionality of an IDS but with an extra option that can stop incidents. An IPS can work as an IDS by deactivating the IPS option, which is why the term IDPS is used to mean both (IDS and IPS).

This post provides solid foundations to setup the seen for the understanding the upcoming posts in this series when we delve into different methods used to defeat these systems.

Continue reading Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 2

Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 1


Introduction

Computers have advanced to become part of our daily life, everywhere you go there is a computer network that’s been installed to perform a certain number of jobs; and the effectiveness of organisation’s business performance has become greatly dependent on the availability, reliability and security of these networks and the systems connected to it. This has resulted to the unfortunate fact that many systems connected to the internet is a target of a range of attacks especially organisations with hundreds of hosts, services and sensitive data. It is also equally true for small offices and isolated home users with no data to protect. This is because criminals would benefit greatly from the data they steal from big organisations; and in the case of small offices and home users, criminals would benefit from them by using them as a stepping stone so they can launch their attack without being caught.

From the beginning of 2003, the (SANS Internet Storm Centre ISC 2003) started to monitor the average survival time of un-patched machines and found that the time it takes to download patches is greater than the time to install the software. This means that before a system is fully patched attacks have already spread across the network at incredible speed. In many cases the speed of these attacks and the speed they spread across the network exceed the possibility of human intervention. Therefore the development of the components (hardware and software) that detects these attacks becomes extremely important.

As it has been mentioned by (Bruneau 2001); the rule-based method developed by Dorothy Dinning and Peter Neumann between 1984 and 1986 was used by the first IDS system. This work was influenced by a report published by James P Anderson in 1980 titled “How to use accounting audit files to detect unauthorised access”. This model was improved to create what is recognised today as the Next-Generation Intrusion Detection Expert System (Bruneau 2001, p.3).

Continue reading Investigating the efficiency of modern Intrusion Detection Systems (IDS) in detecting current evasion techniques – Part 1